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Abstract. Composite materials like steel fibre reinforced concrete (SFRC) gain attention among engineers and 

designers. It is possible by adding fibres to increase ductility of such brittle materials as concrete. However, such 

materials are difficult to design, because the mechanical properties of SFRC are hard to predict. Nonlinear 

computer modelling based on the Finite Element Analysis (FEA) can be utilised to predict failure of a composite 

structure, if the material properties are defined correctly. Material model describing properties in tension and 

compression of the composite need to be defined. In practice uniaxial tension tests in case of SFRC are difficult to 

perform, therefore the properties of the material are represented by standard laboratory bending tests. These results 

cannot be used directly in nonlinear FEA simulation software. The aim of the study is to find the link between the 

results of standard bending tests and the material model in tension that could be used in simulation software. In 

the study ATENA GiD software is used for simulation purposes. The simulation is performed in conjunction with 

experimental results of 24 SFRC beams, tested according to the standard EN 14651. The material model of SFRC 

is obtained by an improved inverse analysis based on the bending test results. Parametric analysis of the SFRC 

material model is performed. As a result, a numerical method for converting the bending test results to the material 

model in tension is suggested. The evaluation of the proposed model shows ± 2.5% error at 3.5 mm of crack mouth 

opening distance in average, if the predicted and the actual fracture energy is compared. 

Keywords: fibre reinforced concrete, tension function, inverse analysis, nonlinear finite element analysis. 

1. Introduction 

By adding short steel fibres to concrete less than 1.0% by volume, the strength properties of the 

material do not change a lot. However, the concrete becomes more ductile. This property allows 

structural engineers to replace the conventional reinforced concrete with the less labour-consuming steel 

fibre reinforced concrete (SFRC) in certain types of structures. To evaluate the load bearing capacity of 

SFRC structures, the structural designer needs an appropriate software and information about the 

material properties. 

To model a SFRC structure in different loading stages a nonlinear finite element analysis (FEA) 

software is strongly recommended. The software must be capable of handling the nonlinear material 

properties and possible strain softening behaviour in tension. If the correct material properties, especially 

tension function, are defined, the software opens huge possibilities for structural designers [1]. 

In case of ordinary SFRC the tensile properties can be determined by laboratory tests according to 

the standard EN 14651 [2]. According to the standard notched SFRC prisms are tested in three-point 

bending and the applied load versus the crack mouth opening displacement (CMOD) is recorded. The 

test gives information about the material’s tensile behaviour in bending, but it cannot be used to describe 

the behaviour in pure tension, because in case of SFRC it is different [1; 3]. Therefore, the test results 

are not valid to define the material properties in the FEA software. On the other hand, the laboratory 

tests for SFRC in direct tension are rather complicated, thus not supported by most of the labs. 

To address this issue different methods of inverse analysis are used. In the analysis the material 

properties in tension are determined by manual [4; 5] or numerical [6; 7] iteration so that 𝐹–𝐶𝑀𝑂𝐷 (or 

load-deflection) behaviour of a theoretical model would fit to the experimental one. The manual 

approach is comparatively a labour-consuming process, because the position of the points defining the 

tension function are to be guessed. Sajdlova et al [8] suggested to start with the simple definition 

proposed by RILEM to be modified by the iteration process. Although there are some guidelines 

available, the prediction of the number and the position of the points in both directions takes time and 

experience.  

The numerical method proposed by Roelfstra et al [6] is based on the bilinear approximation of 

concrete strain softening behaviour. The right crack opening law for a specific material is found by 

solving an optimisation task using numerous computer iterations. There are variety of other numerical 

methods used for the inverse analysis, including a use of a multi-criteria analysis that is used to make 

decisions for identification of SFRC properties [7]. Novak and Lehky [9] proposed a concept to use 
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artificial neural network in conjunction with the inverse analysis. Besides the approaches mentioned so 

far, methods based on fracture energy are suggested [10]. 

The aim of this paper is to share the authors’ experience to ease the process of determining the 

tension properties of SFRC to be used in nonlinear FEA software. Two methods are developed. The first 

is a slightly improved manual inverse analysis. The second is a mathematical model to determine the 

tension function by numerical calculations based on the standard bending test results.  

2. Materials and methods 

2.1. Experimental laboratory tests 

The experimental results are obtained by testing 24 notched beam specimens in flexure according 

to the standard EN 14651 [2]. All the specimens can be grouped in two samples, S2 and S3, with two 

different amounts of fibres: 30 and 60 kg·m-3, respectively. In all cases fibres with hooked ends, 50 mm 

length, and 0.75 mm diameter (KAMPE HAREX, DE 50/0.75 N) were used. The specimens were 

manufactured by company “MB Betons”. Self-compacting concrete with the consistency class S5 was 

used. The concrete mean cylindric compressive strength on the day of CMOD tests of the prisms was 

35.65 MPa (CoV 0.032) for sample S2 and 34.47 MPa (CoV 0.033) for sample S3. The 𝐹–𝐶𝑀𝑂𝐷 

curves for the prisms are given in Fig. 1. Based on the curves, the flexural tensile strength and mean 

tensile strength are calculated. The measured and calculated strength and geometrical properties for each 

prism are given in Table 1.  

Table 1 

Geometrical and strength properties of the tested prisms 

Sample Specimen 
𝒃, 

mm 
𝒉𝒔𝒑, 

mm 

𝑭𝑳, 

kN 

𝑪𝑴𝑶𝑫𝑳, 

mm 

𝒇𝒄𝒕,𝑳, 

MPa 

𝒇𝒄𝒕𝒎, 

MPa 

S2 1 153.95 123.835 13.46 0.04 4.276 2.897 

2 154.215 123.965 14.01 0.04 4.434 3.004 

3 153.45 123.115 14.37 0.04 4.634 3.138 

4 151.93 123.675 13.23 0.04 4.27 2.892 

5 152.39 123.885 13.96 0.04 4.477 3.033 

6 153.995 124.32 13.59 0.04 4.282 2.902 

7 151.27 123.525 15.59 0.04 5.066 3.431 

S2 8 154.00 123.745 13.56 0.04 4.313 2.922 

9 153.95 123.665 14.13 0.04 4.501 3.049 

10 153.855 123.410 13.38 0.03 4.283 2.901 

11 154.24 123.300 14.3 0.04 4.574 3.097 

12 153.425 123.625 13.77 0.04 4.404 2.983 

S3 1* 152.58 124.140 - - - - 

2 154.22 123.790 13.03 0.04 4.135 2.801 

3 151.655 123.940 12.89 0.03 4.15 2.812 

4 152.175 123.860 12.83 0.04 4.122 2.792 

5 151.9 123.635 12.33 0.04 3.983 2.698 

6 150.945 124.070 14.09 0.04 4.548 3.081 

7 151.74 124.225 13.08 0.04 4.189 2.839 

8 151.82 124.525 13.3 0.04 4.237 2.872 

9 151.675 124.045 14.52 0.04 4.666 3.161 

10 150.715 124.335 12.03 0.03 3.872 2.624 

11 154.04 123.400 12.02 0.03 3.843 2.603 

12 150.725 123.985 12.46 0.04 4.033 2.732 

* rejected due to broken CMOD measuring device 
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The peak load 𝐹𝐿 is determined as the maximum force developed within the first 0.05 mm of the 

crack mouth opening displacement. The flexural tensile strength 𝑓𝑐𝑡,𝐿 is determined by equation (1) [2]: 

𝑓𝑐𝑡,𝐿  =  
3 ∙ 𝐹𝐿 ∙ 𝑙

2 ∙ 𝑏 ∙ ℎ𝑠𝑝
2 , (1) 

where  𝑙 – span of the beam;  

 𝑏 – width of the cross-section; 

 ℎ𝑠𝑝 – distance from the top of the beam to the tip of the notch.  

The mean tensile strength 𝑓𝑐𝑡𝑚 is derived from the formula given in EC2 [11] as follows: 

𝑓𝑐𝑡𝑚 =  
𝑓𝑐𝑡,𝐿

1.6 − ℎ𝑠𝑝 1000⁄
, (2) 

  
Fig. 1. 𝑭–𝑪𝑴𝑶𝑫 curves for prisms tested in the laboratory 

2.2. Manual inverse analysis 

The inverse analysis is performed partly based on the procedure described in the ATENA Program 

Documentation [4]. To obtain the tension function, the results from the experimental flexure tests are 

used. The specimen and the test setup used in the experiments are modelled in the ATENA GiD software 

(see Fig. 2). The material properties are defined according to the tested properties given in section 2.1. 

Other properties for compressive behaviour are modified according to the suggestions by the ATENA 

documentation [4]. The tensile strength is taken as the mean tensile strength 𝑓𝑐𝑡𝑚 according to Table 1, 

determined by the equations (1) and (2). Typical crack propagation and failure mode of the theoretical 

model (see Fig. 3) correspond well with the experimental beams. 

 

Fig. 2. Model of the prism defined in ATENA GiD: 1 – surface element with user defined material 

properties for SFRC beam; 2 – surface elements modelled as supports with linear-elastic material 

properties; 3 – constraints for points; 4 – applied displacement in y direction; 5 – fixed contacts 

between two surfaces; 6 – monitor points for reaction; 7 – monitor points for displacements in x 

direction; 8 – monitor point for the maximum crack width in the surface 
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Fig. 3. Crack propagation in the specimens simulated by ATENA 

To find the appropriate tension function, the following approach is developed. A series of fixed 

COMD values are chosen. For each given CMOD a tension function value is adjusted. For the tension 

value the recorded 𝐹– 𝐶𝑀𝑂𝐷 data of the tested SFRC beams expressed as the force ratio 𝑟𝐹 are used as 

the initial values multiplied by the transition coefficient 𝑘. The force ratio 𝑟𝐹 at every given 𝐶𝑀𝑂𝐷 

value is calculated by dividing the measured force 𝐹𝑖 with the force at the limit of proportionality (LOP) 

𝐹𝐿: 

𝑟𝐹  =  
𝐹𝑖

𝐹𝐿
, (3) 

where 𝐹𝑖 – determined as the average force in the distance 𝑎 (see Fig. 4(b)) next to the given 

𝐶𝑀𝑂𝐷.  

In this study the following 𝐶𝑀𝑂𝐷 values (in mm) were used:  

𝐶𝑀𝑂𝐷 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   =  {0, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 20} +  𝐶𝑀𝑂𝐷𝐹𝐿
, (4) 

where  𝐶𝑀𝑂𝐷𝐹𝐿
 – crack mouth opening displacement at LOP.  

The 𝐶𝑀𝑂𝐷 =  20 𝑚𝑚 is considered as the ultimate crack opening distance that can be related to 

the length of the fibres. It is assumed here that the 𝐶𝑀𝑂𝐷 cannot exceed 40 to 50% of the fibre length, 

thus 0.4 ∙ 50 𝑚𝑚 =  20 𝑚𝑚 as the ultimate 𝐶𝑀𝑂𝐷 value was used. The length of the distance 𝑎 for 

each CMOD point is taken as: 

𝑎𝑖  =  min {
𝐶𝑀𝑂𝐷𝑖 − 𝐶𝑀𝑂𝐷𝑖−1

0.2 𝑚𝑚
, (5) 

The transition from the force ratio 𝑟𝐹 to the tension function is performed by means of the coefficient 

𝑘: 

𝑟𝐹.𝑡  =  𝑘 ∙ 𝑟𝐹 , (6) 

where  𝑟𝐹.𝑡 – force ratio for the tension function.  

At 𝑟𝐹.𝑡 =  1.0 the tensile strength corresponds to the LOP. Conversion from 𝐶𝑀𝑂𝐷 to strains is 

needed for the FEA software and it is done as follows: 

𝜀𝑖 =  (𝐶𝑀𝑂𝐷𝑖 − 𝐶𝑀𝑂𝐷𝐹𝐿
) 𝑙𝑐ℎ⁄ , (7) 

where  𝑙𝑐ℎ – characteristic length, which is taken equal to the size of finite elements at the location, 

where cracks develop. In this study the size of the finite element is 20 mm. 

The sizes of the finite elements of the model are kept constant in the area of the possible fracture 

zone. 

The vertical displacement is applied by steps of 0.02 mm. The CMOD is calculated as the difference 

of the two horizontal measurements at each side of the notch. As a result, a theoretical 𝐹 − 𝐶𝑀𝑂𝐷 curve 

is obtained and compared with the experimental one. Afterwards the values of the transition coefficients 

are adjusted and the ATENA calculation is performed. The procedure is repeated until the match 

between the theoretical and experimental 𝐹 − 𝐶𝑀𝑂𝐷 curves of the given specimen is satisfactory. The 
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theoretical curves and the transition coefficients were obtained for 6 specimens of sample S2. 

Correlation between the coefficient values and other parameters was analysed. 

2.3. Numerical model 

Based on the results obtained from manual inverse analysis (see section 2.2.), a numerical approach 

was developed. The aim of this approach is to define a model to calculate the transition coefficients 𝑘 

and the tension function to avoid the manual iteration process. The developed model is illustrated in 

Fig. 4.  

 

 

Fig. 4. Proposed method for obtaining the tension function: a – experimental F-CMOD curve 

divided into intervals; b – experimental curve expressed in terms of the force ratio rF and 

approximated (magenta); c – approximated curve (magenta) converted to strains with a line (blue) 

connecting two characteristic points (red); d – transition coefficient values (green line); e – transition 

from the approximated flexure curve (magenta) to the tension function (red); f – full representation of 

the tension function as defined in ATENA software 

The first two steps are shown in Fig. 4(a) and (b) are described in section 2.2. After converting 

CMOD to strains 𝜀 according to equation (7), the slope coefficient 𝜃 between the points 2 and 𝑛 − 1 is 

calculated (see Fig. 4(c)): 

𝜃 =  
𝑟𝐹,2 − 𝑟𝐹,𝑛−1

𝜀𝑛−1 − 𝜀2
, (8) 

where  𝑟𝐹,2, 𝑟𝐹,𝑛−1, 𝜀2, 𝜀𝑛−1 – force ratios and strains corresponding to the elements 2, and 𝑛 − 1 

in CMOD⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   vector (4), respectively;  

 𝑛 is the number of elements in the vector.  

The points 2 and 𝑛 − 1 are taken because in this range the tension function needs to be defined. The 

values for the first and the last point are fixed and do not require any calculation. 

Using the slope coefficient 𝜃, the values of the force ratio 𝑟𝐹,𝑖 are converted to the values of the 

coefficient 𝑘𝑖
∗, so that the line connecting the point 2 and 𝑛 − 1 is horizontal: 

𝑘𝑖
∗ =  𝑟𝐹,𝑖 − (|𝜀𝑛−1 ∙ 𝜃| − 𝜀𝑖 ∙ 𝜃), 𝑖 =  2,⋯ , 𝑛 − 1 (9) 

The values of the transition coefficient 𝑘 at each point are got by moving the 𝑘∗ polyline so that 𝑘2
∗ 

and 𝑘𝑛−1
∗  values are equal to 𝑘𝑙𝑖𝑚 (magenta line in Fig. 4(d)). The final 𝑘 values are taken smaller or 

equal to 𝑘𝑙𝑖𝑚 as it is represented in equation (10) and by the green polyline and grey dots in Fig. 4(d). 

𝑘𝑖 =  𝑚𝑖𝑛 {
𝑘𝑖

∗ ∙ 𝛽 − (𝑘2 ∙ 𝛽 +  𝑘𝑙𝑖𝑚)

𝑘𝑙𝑖𝑚
, (10) 

a) b) c) 

d) e) f) 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 26.-28.05.2021. 

 

270 

where  𝑘𝑙𝑖𝑚 =  0.45 – upper limit value of the coefficient 𝑘 after LOP;  

 𝛽 =  0.7 – reduction coefficient.  

The values of the first and the last element of the coefficient vector 𝑘1 and 𝑘𝑛 are taken equal to 0.8 

and 0, respectively. The values mentioned in this paragraph are obtained from the results of the manual 

inverse analysis presented in the section 3. The force ratio values for the tension function is then found 

by the equation (6) as shown by the red polyline in Fig. 4(e) and (f). 

3. Results and discussion 

Values of the transition coefficient 𝑘 for the analysed specimens are plotted in Fig. 5. It was found 

that the values of 𝑘 depend on two parameters: strain 𝜀 and force ratio 𝑟𝐹. For higher 𝑟𝐹 values the 𝑘 

values increase. However, it is true for small strain values. With the increase of the strains, the influence 

of 𝑟𝐹 decreases. The correlation between 𝑘 and 𝑟𝐹 for different 𝜀 values is shown in Fig. 6. If the 

coefficient at LOP, 𝑘1, is taken equal to 0.8, the coefficient at other strain values does not exceed 0.45. 

In all the cases 𝑘2 values are 0.45, if it is set at the strain 𝜀 =  0.0025, and the strain at the LOP is set 

to zero. 

 

Fig. 5. Transition coefficient 𝒌 obtained by manual inverse analysis 

The experimental 𝐹 − 𝐶𝑀𝑂𝐷 curves (see Fig. 1) are compared with theoretical curves, which are 

obtained by ATENA Science software and the tension function properties determined by the manual 

inverse analysis (section 2.2.) and the proposed model (section 2.3.). The comparison for sample S2 

given in Fig. 7 shows rather good compliance between the theoretical and experimental results. Both 

proposed methods lead to almost identical 𝐹 − 𝐶𝑀𝑂𝐷 curves. However, in case of sample S3, which 

due to the increased amount of fibres showed higher residual strength values, some discrepancies are 

revealed. For specimens S3-6, S3-8 and S3-9 a very steep increase of residual strength after LOP was 

observed. In these cases, the residual strength was underestimated for about 5 to 15%. 

The numerical comparison of the results is performed based on two parameters: the force and the 

area under the 𝐹 − 𝐶𝑀𝑂𝐷 curve (fracture energy) at a given CMOD value. The error is calculated by 

the following formula: 

𝑒𝑟𝑟𝑜𝑟 =  (𝑇ℎ𝑒𝑜𝑟 − 𝐸𝑥𝑝) 𝐸𝑥𝑝⁄ × 100%, (11) 

where 𝑇ℎ𝑒𝑜𝑟 and 𝐸𝑥𝑝 are the compared theoretical and experimental values, respectively.  

The area 𝐺 under the 𝐹 − 𝐶𝑀𝑂𝐷 curve for each 𝐶𝑀𝑂𝐷⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ value is calculated by integration according 

to equation (12).  

𝐺𝑖 =  ∫ 𝐹(𝐶𝑀𝑂𝐷) 𝑑𝐶𝑀𝑂𝐷
𝐶𝑀𝑂𝐷𝑖

0

(12) 
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The estimated errors for the areas 𝐺 and the forces 𝐹 are represented by boxplots in Fig. 8, 9. The 

average error for 𝐺 is around 20% for the force at LOP (CMOD = 0.05 mm), but the error reduces 

rapidly to around 2.5% for CMOD > 0.2 mm. The results are similar for both samples, however, in the 

case of S3 they are more scattered and tend to slightly overestimate actual 𝐺 values. Kooiman [12], 

using the inverse analysis procedure, proposed by [6] set the limit for the error of fracture energy to be 

less than 10%. In his studies the area under the curves till 20 mm for 30 mm fibres and till 70 mm for 

60 mm fibres was compared. Sucharda [7] has not provided any numerical comparison for his results, 

but an approximate evaluation suggests that the error varies from around 10% at small displacements 

(0.5…1.0 mm) to around 2% at 4 mm displacement. The data were acquired by a plot digitizer for the 

specimens with fibre amount of 1.0% (samples H10 and A10). 

 

 
  

  

 

 

Fig. 6. Correlation between 𝒌 and 𝒓𝑭 at different 𝜺 values 

The errors of 𝐹 values do not show any pattern, but for most cases they lie between -7.5% and 5% 

for sample S2 (fibres 30 kg·m-3), and between -10% and 10% for sample S3 (fibres 60 kg·m-3). These 

deviations are relatively small comparing to the scatter of the experimental residual strength for 

specimens of the same sample (see Fig. 1), where the difference between the residual strength of two 

specimens can reach up to ~100%.  

The advantage of the numerical approach proposed in this study is that the tension function can be 

determined without any iteration. In contrast, the methods proposed by other researchers require 

numerous iterations, thus using more computational time, or the accuracy of simulation is reduced. 

Kooiman points that the balance he has found for his approach is 500 iterations [12]. On the other hand, 

the proposed method has to be validated for other types of fibre reinforced cement composites. Special 

attention needs to be paid to the materials having distinctive strain hardening behaviour at small crack 

opening distances.  
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Fig. 7. Comparison between the experimental (black) and the ATENA results based on the 

tension function from the manual inverse analysis (blue) and from the proposed numerical 

model (red)  

 

Fig. 8. Errors of theoretical 𝑮 values if compared to the experimental ones,  

represented in form of boxplots: pink dots show the actual error values 
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Fig. 9. Errors of theoretical 𝑭 values if compared to the experimental ones,  

represented in form of boxplots: pink dots show the actual error values 

Conclusions 

1. The SFRC standard bending test results differ from the material behaviour in tension, but they can 

be used to derive the SFRC tension properties using mathematical formulas. The paper proposes a 

model to predict SFRC strength properties in tension after the limit of proportionality (LOP). 

2. The evaluation of the proposed model shows 8% error at 0.1 mm and ± 2.5% error at 3.5 mm of the 

crack mouth opening distance (CMOD) in average, if the areas under the experimental and 

theoretical 𝐹 − 𝐶𝑀𝑂𝐷 curves or the fracture energies are compared. 

3. The tension properties of SFRC obtained by the proposed model can be used as the actual material 

properties, or as the starting values in manual inverse analysis, if some adjustments are needed. 

4. The proposed model shows rather good results for SFRC with strain softening and moderate strain 

hardening behaviour. However, it needs to be adjusted in case of steep increase of strength right 

after the LOP or other rapid changes of the residual strength. 
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